/**
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

#include "qcommon.h"

typedef struct MD5Context
{
	uint32_t buf[4];
	uint32_t bits[2];
	unsigned char in[64];
} MD5_CTX;

#ifndef Q3_BIG_ENDIAN
#define byteReverse(buf, len)   /* Nothing */
#else
static void byteReverse(unsigned char *buf, unsigned longs);

/*
 * Note: this code is harmless on little-endian machines.
 */
static void byteReverse(unsigned char *buf, unsigned longs)
{
	uint32_t t;
	do
	{
		t = ( uint32_t )
		    (( unsigned ) buf[3] << 8 | buf[2]) << 16 |
		    (( unsigned ) buf[1] << 8 | buf[0]);
		*( uint32_t * ) buf = t;
		buf                += 4;
	}
	while (--longs);
}
#endif // Q3_BIG_ENDIAN

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
static void MD5Init(struct MD5Context *ctx)
{
	ctx->buf[0] = 0x67452301;
	ctx->buf[1] = 0xefcdab89;
	ctx->buf[2] = 0x98badcfe;
	ctx->buf[3] = 0x10325476;

	ctx->bits[0] = 0;
	ctx->bits[1] = 0;
}
/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)

/**
 * @brief The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(uint32_t buf[4],
						 uint32_t const in[16])
{
	uint32_t a, b, c, d;

	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];

	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}

/**
 * @brief Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
static void MD5Update(struct MD5Context *ctx, unsigned char const *buf,
					  unsigned len)
{
	uint32_t t;

	/* Update bitcount */

	t = ctx->bits[0];
	if ((ctx->bits[0] = t + (( uint32_t ) len << 3)) < t)
	{
		ctx->bits[1]++;     /* Carry from low to high */
	}
	ctx->bits[1] += len >> 29;

	t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */

	/* Handle any leading odd-sized chunks */

	if (t)
	{
		unsigned char *p = ( unsigned char * ) ctx->in + t;

		t = 64 - t;
		if (len < t)
		{
			Com_Memcpy(p, buf, len);
			return;
		}
		Com_Memcpy(p, buf, t);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, ( uint32_t * ) ctx->in);
		buf += t;
		len -= t;
	}
	/* Process data in 64-byte chunks */

	while (len >= 64)
	{
		Com_Memcpy(ctx->in, buf, 64);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, ( uint32_t * ) ctx->in);
		buf += 64;
		len -= 64;
	}

	/* Handle any remaining bytes of data. */

	Com_Memcpy(ctx->in, buf, len);
}


/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
static void MD5Final(struct MD5Context *ctx, unsigned char *digest)
{
	unsigned      count;
	unsigned char *p;

	/* Compute number of bytes mod 64 */
	count = (ctx->bits[0] >> 3) & 0x3F;

	/* Set the first char of padding to 0x80.  This is safe since there is
	   always at least one byte free */
	p    = ctx->in + count;
	*p++ = 0x80;

	/* Bytes of padding needed to make 64 bytes */
	count = 64 - 1 - count;

	/* Pad out to 56 mod 64 */
	if (count < 8)
	{
		/* Two lots of padding:  Pad the first block to 64 bytes */
		Com_Memset(p, 0, count);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, ( uint32_t * ) ctx->in);

		/* Now fill the next block with 56 bytes */
		Com_Memset(ctx->in, 0, 56);
	}
	else
	{
		/* Pad block to 56 bytes */
		Com_Memset(p, 0, count - 8);
	}
	byteReverse(ctx->in, 14);

	/* Append length in bits and transform */
	(( uint32_t * ) ctx->in)[14] = ctx->bits[0];
	(( uint32_t * ) ctx->in)[15] = ctx->bits[1];

	MD5Transform(ctx->buf, ( uint32_t * ) ctx->in);
	byteReverse(( unsigned char * ) ctx->buf, 4);

	if (digest != NULL)
	{
		Com_Memcpy(digest, ctx->buf, 16);
	}
	Com_Memset(ctx, 0, sizeof(*ctx));          /* In case it's sensitive */
}

void MD5InitSeed(MD5_CTX *mdContext, unsigned long pseudoRandomNumber)
{
	mdContext->bits[0] = mdContext->bits[1] = ( uint32_t ) 0;
	mdContext->buf[0]  = ( uint32_t ) 0x67452301 + pseudoRandomNumber * 11;
	mdContext->buf[1]  = ( uint32_t ) 0xefcdab89 + pseudoRandomNumber * 71;
	mdContext->buf[2]  = ( uint32_t ) 0x98badcfe + pseudoRandomNumber * 37;
	mdContext->buf[3]  = ( uint32_t ) 0x10325476 + pseudoRandomNumber * 97;
}

/**
 * @author Morsik
 * https://github.com/morsik/war-territory
 */
static void CalculateMD5ForSeed(guid_t guid, const char *key, int seed)
{
	MD5_CTX           ctx;
	int               i;
	static const char hex[17] = "0123456789abcdef";
	unsigned char     digest[16];

	MD5InitSeed(&ctx, seed);
	MD5Update(&ctx, (const byte *) key, strlen(key));
	MD5Final(&ctx, digest);

	for (i = 0; i < 16; i++)
	{
		guid[i << 1]       = hex[digest[i] >> 4];
		guid[(i << 1) + 1] = hex[digest[i] & 15];
	}

	guid[i << 1] = 0;
}

void CalculateGUID(guid_t guid, const etkey_t key)
{
	int    i;
	guid_t tmp;

	CalculateMD5ForSeed(tmp, key, 0x00b684a3);
	CalculateMD5ForSeed(guid, tmp, 0x00051a56);

	// guids are lowercased after md5sums, we must to change case to upper
	// so it can be compared in mods with xpsave data for example
	for (i = 0; guid[i]; i++)
		guid[i] = toupper(guid[i]);
}